Counterterrorism-related Specific Immune Globulins: Problems and Challenges in Development

October 24, 2003

Dorothy Scott, M.D.

Branch Chief, Lab. of Plasma Derivatives DH/OBRR/CBER

Counterterrorism and Specific Immune Globulins

- Vaccinia immune globulin (VIG): for treatment of life-threatening complications of smallpox vaccine
- Botulism immune globulin (BIG): for treatment of botulism poisoning
- Anthrax immune globulin (AIG): for treatment of subjects not responsive to antibiotics (proposed)
- Other IG's against other agents are/may be considered (proof-of-concept in animal studies)

Challenges (1)

Product

- Donor selection/vaccination protocols
 - Live vaccines ? Viremia
 - Co-vaccination with live vaccines (if enrolled in vaccine programs)
 - Viral validation in manufacturing
- Potency
 - Bioassays or binding assays?
 - Standards for testing
 - Lot release
 - Dosing

Challenges (2)

Clinical

- Efficacy testing: often product cannot be tested in "real life" scenario, e.g. vaccinia immune globulin for progressive vaccinia
- Role of the animal rule
- Limitations animal testing (BSL-4 agents)

Challenges (3)

- Provision of material in IND stage
 - IND's for indications (often CDC; industry, other government)
 - E-IND's (unexpected events; case-by-case)
- Provision of material long-term (as long as the need exists)
 - Stability monitoring
 - Maintaining supply of product over years; determining when additional lots will be needed

Challenges (4)

- Timing
 - Production timelines (GMP's, and scaleup)
 - Licensure: possible eligibility for Fast Track procedures
 - Priority review
 - Rolling review

Coordination/Problem Solving Early

Vaccinia Immune Globulin: Case Study in Development

- Vaccinia immune globulin, intravenous, human
 - Historically licensed product; very low demand until post 9-11
 - Diminishing potency of old supplies
 - Manufacture of new material indicated

Historical Uses of VIG Products: Complications of Smallpox Vaccination

- Eczema vaccinatum*
- Progressive vaccinia (vaccinia necrosum; gangrenosum)*
- Ocular vaccinia* (but NOT keratitis)
- Generalized vaccinia* (+/-)
- Prophylaxis against eczema vaccinatum

Smallpox Vaccination Complications – Mortality Without VIG Treatment

Normal Vaccination

0%

Eczema Vaccinatum

30-40%

Progressive Vaccinia

100%

Vaccinia Immune Globulin Products

- All are under IND
- All manufactured from Source Plasma of revaccinated donors
- Source Plasma collected 10- approx. 30 days post-vaccination
- New VIG's manufactured using S/D treatment and nanofiltration steps for viral clearance

Challenges in Development and Use of VIGIV

- Plasma donors and live vaccination (vaccinia)
- Potency testing for VIG (lot release)
- Clinical study: real treatment studies not possible in pre-event scenario
- Addressing post-exposure prophylaxis
- Emerging possible indications (the unexpected)
 - Myopericarditis?
 - Monkeypox prophylaxis or treatment?

Smallpox Vaccination and Donor Deferral

- Published January 19, 2003
- Deferral for vaccinees:
 - 21 days after vaccination, OR
 - Until scab falls off
 - WHICHEVER IS LONGER
- Rationale
 - Possibility of viremia
 - Consequences of viral transmission to recipient could be severe

DONOR RESPONSE TO DRYVAX VACCINE

Plasma Collection for VIG Products

- VIG products historically made from plasma collected early post-vaccination
- In vitro studies (B-gal assay; plaque assays): no plaques observed with VIG alone; no evidence live virus in products
- Need to maximize collection of high-titer material

Evidence-based decision-making

- Historical information about viremia
- Publications on capacity of plasma derivative processing steps to clear vaccinia
- CBER and Industry research on the question of viremia in smallpox vaccinees
- Maximizing product safety

Vaccinia Viremia (?)

Herzberg, Kremmer, 1930¹

- 8/17 normal children post vaccine
- titered by bioassay in rabbits
- strains various (cattle lymph)
- viremia days 3-15; mainly day 6-7

Also reported 1953 (journal not available)

¹Zentralblatt fur Bakteriologie 1930; 115:271-80

Vaccinia Viremia (?)

Not seen in "over 100" patients studied (no data shown)¹

FDA and Industry: plaque assays for Vaccinia in blood from recently vaccinated people

¹ Kempe, CH, Pediatrics 1960; 26:176-89

Vaccinia Virus Clearance Potential of VIGIV Manufacturing Processes

Vaccinia Virus

- Enveloped
- DNA
- 400 nM size

Vaccinia Virus and S/D Treatment of FVIII*

	Logs Inactivation						
Virus	Minutes S/D (TNBP 0.3% / Triton X-100 1.0%)						
	0.25	1	10	30	60	120	
Vaccinia	1.0	2.5	3.8	4.4	4.7	4.7	
HSV-1	>5.1	>5.1	Nd	Nd	Nd	Nd	
Sindbis	4.9	5.4	>5.6	Nd	Nd	Nd	

^{*}Resistance of Vaccinia Virus to Inactivation by S/D treatment of Blood products. Roberts, P. Biologicals 2000; 28: 29-32

Vaccinia Virus and S/D Treatment of Fraction II Precipitate (0.3% TNBP/1% PS80, 60-180 min.)*

		Recovered		Eliminated	
Virus	Added	Pre-S/D	After S/D	Clearance	Reduction
Vaccinia	7.75	6.88	4.41	3.34	2.47
HIV-1	> 11.5	> 11.5	<1.5	>10	>10
VSV	7.43	7.32	<1.86	>5.57	>5.46

^{*} Inactivation and elimination of viruses during preparation of human intravenous immunoglobulin. Uemura et al, Vox Sang 1994; 67:246-54.

Plasma Fractionation – Viral Clearance Steps for VIGIV

All recently manufactured new IND products have 2 viral inactivation steps that are expected to clear vaccinia:

1. Solvent-detergent treatment

1. Nanofiltration

Vaccinia Viral Validation for VIGIV Products

- Donor exclusion for 21+ days post-vaccination would result in loss of high-titer plasma
- Working Assumption: Viremia likely to be low level, rare and/or intermittent, if present at all, in normal vaccinated donors
- Testing for post-vaccination viremia ongoing in several laboratories (no positive reports to date, but studies are not finished, and not prospectively designed for viremia monitoring)
- Viral clearance studies suggest vaccinia can be inactivated by S/D treatment, but that vaccinia is relatively resistant compared to other enveloped viruses
- Nanofiltration is expected to remove vaccinia due to its large size
- Process-specific validation will provide enhanced assurance of safety

Potency of VIG

- Bioassays vs. solid-phase (e.g. ELISA) for lot release
 - POTENCY does not always equal BINDING because non-neutralizing (e.g. non-useful) antibodies may bind to antigens on a plate
- CBER has stated preference for bioassay use for VIG products (neutralization)
- CBER in-house assays developed for VIG potency
 - Research-level
 - To enable product characterization
 - To increase bioassay understanding and capabilities

The Old Method: Plaque Reduction Neutralization Test (PRNT)

- First developed in 1960's
- **Slow (3-6 days)**
- > Requires large amounts of plasma
- Day-to-day and person-to-person variability
- ➤ Time-consuming (manual counting of plaques); not automated
- > Difficult to consistently reproduce
- > Difficult to transfer to new labs

CBER RESEARCH: Meeting the Needs H. Golding et al, OVRR, CBER, FDA

- > We developed an improved test using a betagalactosidase reporter-gene containing virus:
 - ➤ Faster (24 hr); High throughput; important for large scale evaluation of many samples in clinical trials
 - ➤ Read-out: automated; Machine reads colorchange
 - > Sensitive, quantitative, reproducible
 - **Easy to transfer to manufacturers/DOD**

In vivo assays

- CBER developed an in vivo model of potency in severely immunocompromised (SCID) mice
- May reflect neutralization of forms of virus not easily cultured, e.g. extracellular enveloped form,
- Useful for comparison to in vitro bioassays
- Provides useful early assurance of likelihood of efficacy
- Other animal models also under development

CBER Research: Protective Effect of VIGIV at Different Doses in SCID Mice

CBER/Manufacturer Testing and Provision of Interim VIG Standard

- MPHBL* VIGIV, manufactured under GMP conditions
- Aliquotted, frozen; no loss of potency with 2 freeze-thaws
- Tested in 3 different laboratories for plaque neutralizing activity, with good agreement
- Available from CBER (scottd@cber.fda.gov)

^{*} Massachusetts Biologic Laboratories

Clinical Studies for Licensure of CT Products: VIGIV Strategy

- How to perform clinical studies pre-event?
 - Actual studies for the disease states (EV and PG) not possible due to very low rate of these complications.
 Licensure based upon PK equivalence and safety data.
 PK not inferior (≥ 0.8) to VIG given I.m.
 - Studies in animal models (e.g. tailpox, SCID mice)
 - Discuss with CBER for product-specific advice
- Post-approval commitments; use of Animal Rule

Current Thinking: Clinical Trials for Licensure of VIGIV, Indications

- (2002) New product indications limited to treatment of VIG-treatable vaccinia vaccine complications; labeling specific to data provided by manufacturer of each product
- (2003) Potential consideration post-exposure prophylaxis possibilities
 - Immunocompromised vaccinees
 - Exfoliative skin conditions
 - Note indication in previously licensed product (Baxter): post-exposure prophylaxis for exfoliative/inflammatory skin conditions, including eczema [not based on controlled studies].

Unexpected Events during IND Phase

 Requests for use of product for postexposure prophylaxis

• Unanticipated clinical scenarios

Clinical Issues: Recent Use of VIG

- To date, no cases of progressive vaccinia (PG), or confirmed eczema vaccinatum (EV)
 - 0/454,856 military vaccinees¹
 - 0/37,478 civilian vaccinees²
- VIG requested for³:
 - Prophylaxis EV in recently vaccinated burn patient (1)
 - Ocular vaccinia (1)
 - Post-vaccination discovery of pregnancy
- ¹ Col. J. Grabenstein, Military Vaccines Agency, USAMC, presented to the Advisory Committee for Immunization Practices (ACIP) 6/18/03
- ² G. Mootrey, National Immunization Program, ACIP 6/18/03
- ³ Discussed at ACIP 6/18/03

Use of VIG(IV) in Pregnancy

- Estimates of fetal vaccinia risk extremely low¹
 - NYC 1942: 0/170,000 pregnant vaccinees
 - U.S. 1967-7: 1/5,600 to 17,000 primary vaccinations
- Inadvertent vaccinations in most cases due to very early (undetectable) pregnancy, or to post-vaccination conception
- CDC advice "Women should contact their healthcare provider regarding use of VIG. Currently, CDC's ACIP does not recommend preventive use of VIG for pregnant women."²
- CDC has established a pregnancy registry for follow-up of vaccinated pregnant women
- ¹ S. Goldstein, CDC National Immunization Program

² (www.bt.cdc.gov/agent/smallpox/vaccination/preg-factsheet.asp)

Smallpox Vaccination and Myo/pericarditis

- Newly recognized complication in U.S.
- DOD: 46 cases/ 454, 856 vaccinees
- Civilian: 22/37,000 vaccinees
- No fatalities
- Etiology possibly immune-mediated;
 VIG use would have to be carefully weighed
- Ongoing follow-up of cases for long-term sequelae

Monkeypox and VIG Use

- VIG use, if any, was discussed
- Note that CDC has recommended smallpox vaccination for people who were likely to have been exposed to monkeypox (http://www.cdc.gov/ncidod/monkeypox/smallpox vaccine_mpox.htm)
 - Contraindicated for certain immunocompromised people

CT Product Development: Common Themes

- Uniqueness of some products
- Need to support supply and supply capability closely in the interests of public health
- Stability of products that may be "on the shelf" for prolonged time – monitoring critical to maintain supply of product
- Evolving recommendations as assays, testing, and product characterization continue
- Frequent discussions among FDA, sponsors, and manufacturers are important!